Slides From NIMH-sponsored tES Workshop Held September 29th and 30th at NIH

An email from Michelle Pearson at the NIH (because I had signed up for the online version of the workshop) alerted me today to a trove of TES (Transcranial Electric Stimulation) info being made available to us. Presenter slides (in PDF form) from the workshop were available for download. Because the download process was pretty wonky, involving many clicks and declined logins to Dropbox I thought to make them available here as well.

1-lisanby-introductory-remarks Sarah Hollingsworth Lisanby, M.D., NIH
2-rumsey-introduction Judy Rumsey, Ph.D.
3-wassermann-historical-overview Eric Wassermann, M.D., NINDS
4-parra-tdcs-mechanisms Lucas Parra, co-founder of Soterix Medial Inc. @lcparra1
5-frohlich-tacs-mechanisms @FlavioFrohlich, University of North Carolina-Chapel Hill
6-clark-combining-imaging-and-stimulation Vincent P. Clark, PhD Mind Research Network
7-woods-tes-technical-aspects Adam J. Woods, PhD @adamjwoods
8-richardson-blinding Jessica D. Richardson, Ph.D.
9-kappenman-reproducibility Emily S. Kappenman
10-bikson-computational-modeling-design Marom Bikson, CCNY @MaromBikson
11-deng-anatomical-variability-efields Zhi-De Deng, Ph.D., NIH
12-dmochowski-targeted-stimulation-sources Jacek P. Dmochowski, CCNY
13-loo-depression-trials Colleen Loo, Black Dog Institute
14-brunoni-neuropsychiatry-large-trials André R. Brunoni, @abrunoni
15-cohen-motor-learning Leonardo G. Cohen, M.D. NINDS
16-edwards-augmentation-neurorehabilitation Dylan J. Edwards PhD
17-lim-ongoing-trials Kelvin O. Lim, M.D.
18-frohlich-tacs-psychiatry-trials @FrohlichLab
19-charvet_remote-tdcs Leigh Charvet PhD, NYU

Early Torpedo Fish TES Researcher. From the Wassermann Historical Overview slides

Early Torpedo Fish TES Researcher. From the Wassermann Historical Overview slides

Adventures in Transcranial Direct-Current Stimulation | The New Yorker

Adventures in Transcranial Direct-Current Stimulation author Elif BatumanElifBatuman
Excellent! We met Jim Fugedy in podcast episode #2

It is the rare human who doesn’t wish to change something about his or her brain. In my case, it’s depression, which runs on both sides of my family. I’ve been taking antidepressants for almost twenty years, and they help a lot. But every couple of years the effects wear off, and I have to either up the dose or switch to a different drug—neither process can be repeated indefinitely without the risk of liver or kidney damage. So although my symptoms are under control for now, I worry, depressively, about what will happen when I exhaust the meds. As I was researching this piece, my attention was caught by a number of randomized controlled trials showing a benefit from tDCS for depression. (The data are insufficient to allow definitive conclusions, but larger trials are in progress.) I was almost embarrassed by how excited I felt. What if it was possible to feel less sad—to escape the deterministic cycle of sadness? What if you could do the treatment yourself, at home, without the humiliation and expense of doctors’ visits? I asked Vince Clark whether any private physicians use tDCS outside of a research setting.

via Adventures in Transcranial Direct-Current Stimulation – The New Yorker.

A Treasure Trove of Stimulating Information!

universityNMJust found this in iTunesU. Wow! You’ll recognize many of these names if you’re reading the tDCS literature. I’ve only watched the Michael Weisend talks (whom we met earlier on the blog) so far. I have a much better understanding of the difficulty of running a tDCS trial now. There’s a lot that can go wrong. If your protocols aren’t set up just right, your information might be useless. Here’s the web link iTunes Link from which you can download in iTunes. Downloads are quite slow.

Introduction to Neurosystems Engineering, Spring 2011 (ECE 595)                   Neurosystems Engineering is an emerging field at the intersection of Neuroscience, Psychology, and Engineering, and the University of New Mexico is its epicenter.

Course Intro   Dr. Gerold Yonas
Course Syllabus   Dr. Gerold Yonas
Tools and Techniques in Neuronal Stimulation  Dr. Edl Schamiloglu
Basic Principles of Feedback and Control   Prof. Chaouki T. Abdallah
Discussing the Course General Approach and Direction  Dr. Gerold Yonas
Effects of Direct Current, Non-Invasive Brain Stimulation on Learning  Michael Weisend
In the Laboratory Transcranial Direct Current Stimulation (tDCS)   Michael Weisend
Posttraumatic Stress Disorder: Roles for Treatment & Prevention (Part I) Dr. Pilar M Sanjuan
Posttraumatic Stress Disorder Roles for Treatment & Prevention (Part II) Dr. Pilar M Sanjuan
Tour of the Mind Research Network   Dr. Vince D. Calhoun
Neuroimaging of Intelligence and Creativity (Part I)    Dr. Rex E. Jung
Neuroimaging of Intelligence and Creativity (Part II)   Dr. Rex E. Jung
Memories and Migraines: Application of tDCS  Laura Matzen
Neurochemistry Application in NonInvasive Brain Stimulation  Dr. Charles Gasparovic
Non-Invasive Brain Stimulation    1:03:47   Lucas C. Parra
Epilepsy, Autism, and Novel Treatment Strategies   Dr. Jeffrey David Lewine
The Emerging Field of Sleep Disorders Medicine  Dr. Barry Krakow
Presentation of Class Projects   Student

PLOS ONE: Transcranial Direct Current Stimulation Augments Perceptual Sensitivity and 24-Hour Retention in a Complex Threat Detection Task

Vincent Clark is an author on this paper. He’s associated with the Mind Research Network. We earlier covered work by Michael Weisend, also from MRN around a Jan. 2012 paper. This paper offers further details and is available to the public.

Transcranial Direct Current Stimulation Procedures

TDCS was applied using an ActivaDose II Iontophoresis Delivery Unit, which provides for delivery of a constant low level of direct current. Square-shaped (11 cm2) saline-soaked (0.9% sodium saline solution) sponge electrodes were attached to the participant with self-adhesive bandage strips. The anode was placed near electrode site F10 in the 10-10 EEG system, over the right sphenoid bone. The cathode was placed on the contralateral (left) upper arm. The site of the anode was selected based on our previous fMRI results showing that this brain region was the primary locus of neural activity associated with performance this task [23].

Anodal 2 mA current was applied to the scalp electrode site F10 in the 10-10 EEG system. The resulting enhancement of performance in the threat detection task is consistent with our previous fMRI results [23] showing that the right inferior frontal cortex is a major locus of a distributed brain network that mediates performance on this task. The right parietal cortex is a part of this network and could also be a target for stimulation.
—————————–
One possible explanation for the improvement in detection performance (hit rate) in the threat detection task is that tDCS increases general arousal, thereby leading to a change in response bias in the more liberal direction [25], which would increase the hit rate. However, computation of signal detection metrics showed that there were no significant effects of tDCS on the ß measure of response bias. Instead, the effect of brain stimulation was to enhance perceptual sensitivity, d′.

The improvement in perceptual sensitivity suggests that participants receiving tDCS were better able to encode stimulus features that distinguished targets and non-targets, which in turn led to accelerated learning and improved retention.

via PLOS ONE: Transcranial Direct Current Stimulation Augments Perceptual Sensitivity and 24-Hour Retention in a Complex Threat Detection Task.

Alan Snyder and Michael Weisend on Through The Wormhole

Ted pointed this out to me in a comment. We’ve met both Alan Snyder and Michael Weisend elsewhere on the blog. This video sums up nicely the areas they’re working in. Anyone else alarmed at the thought of there being a pressing need to fill drone pilot seats and that perhaps tDCS could cut training time in half?

Photo links to YouTube video.

Michael-Weisend-Mind-Research-Network

Michael Weisend Mind Research Network

Obviously we don’t have access to fMRI, yet. But the method Wesiend is demonstrating in the video certainly seems the way to go: Isolate the area of the brain used in the desired skill, and then apply tDCS to facilitate learning.

This is definitely a pattern-recognition type of experiment.

fMRI Showing Medial Temporal Lobe Activity

fMRI Showing Medial Temporal Lobe Activity

…When you are a novice, there’s low-level activation in the medial temporal lobes. But in experts, there’s very high-level activation. And so we targeted tDCS at these areas that increase activity in order to accelerate training. (This is context of drone pilot training)

ActivaDose Device

ActivaDose Device

electrode

Electrode

electrode harness

Electrode Harness

I need help identifying and understanding this electrode setup. Note that it’s the same electrode being used in this shot from a Scientific America article discussing the same research. If there was an electrode in the middle of the cluster, that might be the Anode and the surrounding electrodes could be Cathodes (as seems to be what is developing around HD-tDCS). But a symmetrical 5 node electrode cluster is confusing me.

Image By Richard McKinley USAF

I was trying to understand why Soterix (Marom Bikson) would be developing devices that could administer 8 channels of tDCS simultaneously. Putting the pieces of these articles, papers, and videos together, it becomes pretty clear that tDCS, used to enhance training, especially in military (DOD) contexts, could be hugely profitable.

P.S. In this study, published in the Jan 2012 issue of Neuroimage, Weisend reports using fMRI to locate optimal tDCS application area. Unfortunately, it’s behind a paywall.
TDCS guided using fMRI significantly accelerates learning to identify concealed objects
.

Anodal 2.0 mA tDCS performed for 30 min over these regions in a series of single-blind, randomized studies resulted in significant improvements in learning and performance compared with 0.1 mA tDCS. This difference in performance increased to a factor of two after a one-hour delay. A dose-response effect of current strength on learning was also found.

Transcranial Direct Current Stimulation (TDCS) Targeted Using Brain Imaging Accelerates Learning

From (I believe) a talk in 2010 given at the Organization for Human Brain Mapping by Dr. Vince Clark, director of the Clinical Neuroscience Center at the  University of New Mexico (and previously, director of the Mind Research Network). The slides reference a study where tDCS was used in training subjects to accurately detect hidden and camouflaged objects, as in a military setting. What caught my eye, something I don’t recall seeing anywhere else, is the comparison of effectiveness of different amounts of current. It begs the question: If 2 mA is more effective than 1 mA, what about 3 mA? [As Peter points out in his comment, the chart actually contrasts effects of 2 mA and  0.1 mA as a control. I do still think it’s a good question: Why 2 mA?]. Much I don’t understand in the slides without the talk to go along with, but have a look  pdf, Quick View. And a link (abstract) to what appears to me a follow-up study. P.S. After tracking all this down I can’t tell you how frustrating it is to not be able to access the full texts of these studies, especially when we (NiH, DOD) paid for them. If you can get me a copy I would
greatly appreciate it.

mind Research Network Vince Clark 1

mind Research Network Vince Clark 2

 

Amping Up Brain Function: Transcranial Stimulation Shows Promise in Speeding Up Learning: Scientific American

Another group of researchers hot on the trail how tDCS might be used to enhance brain function is the (non-profit) Mind Research Network of Albuquerque, NM. A lot of their work is funded by NiH, but what I’ve seen around their tDCS research pertains to increasing soldier’s ability to detect danger, and is funded by DOA (2010 Research Report pdf) Unfortunately I was not able to find a full version of the paper not behind a pay wall. The abstract is here and from a Scientific America article…

Subjects definitely register the stimulation, but it is not unpleasant. “It feels like a mild tickling or slight burning,” says undergraduate student Lauren Bullard, who was one of the subjects in another study on TDCS and learning reported at the meeting, along with her mentors Jung and Michael Weisend and colleagues of the Mind Research Network in Albuquerque. “Afterward I feel more alert,” she says. But why?

Bullard and her co-authors sought to determine if they could measure any tangible changes in the brain after TDCS, which could explain how the treatment accelerates learning. The researchers looked for both functional changes in the brain (altered brain-wave activity) and physical changes (by examining MRI brain scans) after TDCS.

They used magnetoencephalography (MEG) to record magnetic fields (brain waves) produced by sensory stimulation (sound, touch and light, for example), while test subjects received TDCS. The researchers reported that TDCS gave a six-times baseline boost to the amplitude of a brain wave generated in response to stimulating a sensory nerve in the arm. The boost was not seen when mock TDCS was used, which produced a similar sensation on the scalp, but was ineffective in exciting brain tissue. The effect also persisted long after TDCS was stopped. The sensory-evoked brain wave remained 2.5 times greater than normal 50 minutes after TDCS. These results suggest that TDCS increases cerebral cortex excitability, thereby heightening arousal, increasing responses to sensory input, and accelerating information processing in cortical circuits.

Remarkably, MRI brain scans revealed clear structural changes in the brain as soon as five days after TDCS. Neurons in the cerebral cortex connect with one another to form circuits via massive bundles of nerve fibers (axons) buried deep below the brain’s surface in “white matter tracts.” The fiber bundles were found to be more robust and more highly organized after TDCS. No changes were seen on the opposite side of the brain that was not stimulated by the scalp electrodes.

via Amping Up Brain Function: Transcranial Stimulation Shows Promise in Speeding Up Learning: Scientific American.

Neurosystems for National Security – MRN

More from and about the Mind Research Network.

The goal of NS2 is to translate high spatial and temporal resolution brain imaging, fMRI, MEG, and noninvasive brain stimulation into viable solutions for training soldiers and intelligence professionals to help them with real-time decision making and actions that avert injury and trauma. Noninvasive brain stimulation, specifically transcranial direct current stimulation (TDCS), is being used to attempt to influence the learning process, perhaps increasing the speed of learning or improving retention. TDCS utilizes scalp electrodes to deliver low amplitude direct currents to localized areas of the cerebral cortex (the superficial part of the brain), thereby modulating the level of excitability, or, put another way, increasing or decreasing the probability that neurons will talk to each other. “Even though TDCS has been applied to humans safely for decades, we are just beginning to learn how it helps to accelerate the learning process. Within the next couple of years, I expect great progress toward this goal,” says researcher Dr. Michael Weisend.

via Neurosystems for National Security – MRN.
See Also: tDCS at MRN

Is Electricity the New Smart Drug? – Percolator – The Chronicle of Higher Education

I called Weisend recently to see what he thought of people experimenting with tDCS. “In the DIY crowd they don’t have the neuroimaging to start the process and know where to place the electrodes,” he told me. “Their success and their safety are going to be limited.” In the laboratory, subjects go through two or three sessions of tDCS over a week. What happens long term if you do more than that? Nobody knows. And the equipment you order from some random person online may not be as reliable as what’s used in a laboratory.

That said, Weisend believes tDCS can be done safely, and he thinks it might be used to prevent memory loss in the elderly or to help patients recover from traumatic brain injuries. He’s tried tDCS on his own brain hundreds of time and hasn’t suffered any deleterious effects—with the notable exception of a few skin burns that were severe enough to leave scars. “You get attached to your work, I guess,” he says.

via Is Electricity the New Smart Drug? – Percolator – The Chronicle of Higher Education.