Imaging global brain connectivity can predict how intelligent you are | KurzweilAI

Global hub of the brain

Prefrontal cortex (credit: Wikimedia Commons)

One possible explanation of the findings, the research team suggests, is that the lateral prefrontal region is a “flexible hub” that uses its extensive brain-wide connectivity to monitor and influence other brain regions in a goal-directed manner.

“There is evidence that the lateral prefrontal cortex is the brain region that ‘remembers’ (maintains) the goals and instructions that help you keep doing what is needed when you’re working on a task,” Cole says.

“So it makes sense that having this region communicating effectively with other regions (the ‘perceivers’ and ‘doers’ of the brain) would help you to accomplish tasks intelligently.”

While other regions of the brain make their own special contribution to cognitive processing, it is the lateral prefrontal cortex that helps coordinate these processes and maintain focus on the task at hand, in much the same way that the conductor of a symphony monitors and tweaks the real-time performance of an orchestra.

“We’re suggesting that the lateral prefrontal cortex functions like a feedback control system that is used often in engineering, that it helps implement cognitive control (which supports fluid intelligence), and that it doesn’t do this alone,” Cole says.

via Imaging global brain connectivity can predict how intelligent you are | KurzweilAI.
Abstract

Can Electrical Stimulation tDCS Enhance Your Brain Performance? Fact Vs. Myth | The ZocDoc Blog

By way of Gareth at Trans-Cranial-Direct-Current.Blogspot.com this article from ZocDoc makes the case for caution…

Needless to say, tDCS should never be tried at home because of these potential risks. Scientists using tDCS in a laboratory setting have the expertise and high-quality equipment to assure the safety of their participants. They also have equipment like EEG and MRI that can help them localize the appropriate brain region for stimulation, as well as the training to understand how and when tDCS could be safe and effective. If you’re curious about tDCS your best bet is to find a local university that studies tDCS and volunteer for an experiment.

via Can Electrical Stimulation tDCS Enhance Your Brain Performance? Fact Vs. Myth | The ZocDoc Blog.

I must say though, that there seems very little to worry about in the publication abstracts cited in the article. Very well worth reading.
Modulating the brain at work using noninvasive transcranial stimulation.

tDCS polarity effects in motor and cognitive domains: a meta-analytical review.
Interesting…“When the anode electrode is applied over a non-motor area, in most cases, it will cause an excitation as measured by a relevant cognitive or perceptual task; however, the cathode electrode rarely causes an inhibition.”

A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation.
(AE, adverse effects) “Although results suggest that tDCS is associated with mild AEs only, we identified a selective reporting bias for reporting, assessing and publishing AEs of tDCS that hinders further conclusions.”

Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation.

More on HD tDCS From Neuralengr

Video shows computer simulation of current distribution using ‘4 X 1 Ring Configuration (HD-tDCS)

Compared with conventional pads.

Source and more details: http://neuralengr.com/projects/tar
More from CUNY Neural Engineering Group (home of Marom Bikson)
Bio-heat Transfer model of tDCS
High Density Electrodes/Adapters
High-Density Transcranial Electrical Stimulation (HD-TES) Targeting Software Development
And this is interesting. Looks like CUNY is about to spin off another company.
Neuromatters Perhaps the brainchild of Paul Sajda.

Mind Alive – Dave Siever

Update: Spent a lot of time tracking down the Eldith device today and wherever I found it there was no mention of price. Dave Siever does mention the price and features in comparison to the device his company makes and I thought you might find it interesting. Not sure how much has changed since this was written.

There are presently only two stand-alone devices that produce tDCS. They are: the Eldith DC Stimulator by Neuro Conn, of Germany, which sells for €3000 (about $4,000US) and the CESta, by Mind Alive Inc., of Canada, which sells for $350US. [now $450. + accessories] Both units are current controlled and programmable. The CESta has the added benefits of providing cranio-electro stimulation and micro-electro therapy for muscle work. It also features randomization of the frequency stimulation and usage tracking for patient compliance. The CESta has been “tuned” with the electrodes provided so that at 1 ma stimulation, the active electrode delivers 50 µa/cm2, while the reference electrode produces 18 µa/cm2. This table shows the current density using various sizes at 1 and 2 ma currents.

25 cm2  5 x 5     @         1 ma     =          40 µa/cm2

25 cm2  5 x 5     @         2 ma     =          80 µa/cm2

36 cm2  6 x 6     @         1 ma     =          27 µa/cm2

49 cm2  10 x 10 @         1 ma     =          20.4 µa/cm2

You have to wonder about a tDCS device that doubles as a colloidal silver maker, but in the interest of ‘covering the field’ I wanted to post this video of Mind Alive’s Dave Siever discussing tDCS.

http://www.youtube.com/watch?v=f3eAU5aXQ9E

The photos and diagrams used in the talk can be found here. Mind Alive has a large collection of tDCS related papers and articles available to download (zip file of pdfs).

Mind Alive sells a variety of devices including what I believe are called ‘Mind Machines’-devices intended to alter your brainwaves using light and sound. One of their devices, the Oasis Pro can also be used for tDCS.

10/20 System Electrode Distances

Trans Cranial Technologies offer this manual which explains the International 10/20 system for describing the location of scalp electrodes. 10/20 System Positioning (pdf) See Also: Wikipedia, Electrode Positions

The system is based on the relationship between the location of an electrode and the underlying area of cerebral cortex. The numbers ‘10’ and ‘20’ refer to the fact that the distances between adjacent electrodes are either 10% or 20% of the total front- back or right-left distance of the skull.
Each site has a letter to identify the lobe and a number to identify the hemisphere location.

Also from Trans Cranial Technologies, Cortical Functions Reference

Brodmann Cortical Areas

 

Transcranial direct current stimulation in the treatment of depression | Medicographia

This is the single example of the frequently sited Eldith device matched to a photo of the device. I’m not sure if perhaps neuroConn changed the name of the device, or…?

 

Transcranial direct current stimulation (tDCS)

_ Mechanism of action
Contemporary tDCS protocols typically involve the application of a 1 mA or 2 mA direct current (DC) for up to 20 minutes between two surface electrodes. These may vary in size, but are commonly _35cm2 (5×7 cm). The electrodes are placed on the scalp, one serving as the anode and the other as the cathode. Current flows from the anode to the cathode, some being diverted through the scalp and some moving through the brain.15

Figure 2
Figure 2. Eldith transcranial direct current stimulation (tDCS)
stimulator with electrodes. Photo by the author.

Figure 3

via Transcranial direct current stimulation in the treatment of depression | Medicographia.

Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation

This is a paper from Drs. Nitsche and  Paulus at the University of Goettingen in 2000. I gather that this paper was responsible for the resurgence of interest in tDCS.

Abstract
In this paper we demonstrate in the intact human the possibility of a non-invasive modulation of motor cortex excitability by the application of weak direct current through the scalp.
Excitability changes of up to 40 %, revealed by transcranial magnetic stimulation, were accomplished and lasted for several minutes after the end of current stimulation.
Excitation could be achieved selectively by anodal stimulation, and inhibition by cathodal stimulation.
By varying the current intensity and duration, the strength and duration of the after-effects could be controlled.
The effects were probably induced by modification of membrane polarisation. Functional alterations related to post-tetanic potentiation, short-term potentiation and processes similar to postexcitatory central inhibition are the likely candidates for the excitability changes after the end of stimulation. Transcranial electrical stimulation using weak current may thus be a promising tool to modulate cerebral excitability in a non-invasive, painless, reversible, selective and focal way.

via Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.
Full Paper Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation

CES (Cranial electrotherapy stimulation) Devices Currently (Ha!) Available

Turns out there are numerous ‘FDA Cleared’ CES (cranial electrotherapy stimulation AC) devices available for sale in the U.S. when recommended and prescribed by your doctor. Typically these devices are recommended for pain but also for depression. They also seem to be recommended for use in drug treatment. Cost of the device is sometimes covered by insurance.

[Video was removed from Youtube] That clip shows both the Fisher Wallace Stimulator and the Alpha-Stim devices.

More from Fisher Wallace. [Video was removed from Youtube]

Also for doctors: How to prescribe the device.

http://www.youtube.com/watch?feature=player_embedded&v=dOZ3Ktg04vY

A couple of other available devices: CES Ultra and European manufacturer Onko Cet offers the Transair series of transcranial electrostimulation (TES) devices.

 

tDCS and CES – A Little History

Is a way to think about the effects of tDCS then, that it increases neuronal ‘excitability’?
Interesting too, the possibility that AC stimulation might actually be affecting neurotransmitter production.

From: Noninvasive Brain Stimulation with Low-Intensity Electrical Currents: Putative Mechanisms of Action for Direct and Alternating Current Stimulation [PDF}

As early as 1794, Aldini had assessed the effect of galvanic head current on himself, and by 1804, he had reported the successful treatment of patients suffering from melancholia. Research continued through the early 20th century; yet because DC induced variable results, or sometime none at all, the use of low-intensity DC (i.e., tDCS) was progressively abandoned…

…between 1938 and 1945, subsequently led to an interest in the application of AC at lower intensities with the first study of “cranial electro-therapy stimulation” (also known as “electrosleep”) published by Anan’ev and others in 1957… Since the 1960s, a series of studies with low-intensity AC stimulation have been published, and cranial AC stimulation devices have become commercially available for personal use (e.g., Alpha-Stim, Fisher Wallace Cranial Stimulator, Transair Stimulator, etc.). However, research in this area has been inconsistent and there remains a lack of solid evidence showing the effects of weak transcranial stimulation with AC.

…During tDCS, low-amplitude direct currents penetrate the skull to enter the brain. Although there is substantial shunting of current at the scalp, sufficient current penetrates the brain to modify the transmembrane neuronal potential and, thus, influences the level of excitability and modulates the firing rate of individual neurons. DC currents do not induce action potentials; rather, the current appears to modulate the spontaneous neuronal activity in a polarity-dependent fashion: For example, anodal tDCS applied over the motor cortex increases the excitability of the underlying motor cortex, whereas cathodal tDCS applied over the same area decreases it. Similarly, anodal tDCS applied over the occipital cortex produces short-lasting increases in visual cortex excitability. Hence, tDCS is believed to deliver its effects by polarizing brain tissue, and although anodal stimulation generally increases excitability and cathodal stimulation generally reduces excitability, the direction of polarization depends strictly on the orientation of axons and dendrites in the indu- ced electrical field.

CES is a nonstandardized and often indistinct method of delivering cranial AC stimulation; indeed many studies cite the method of stimulation simply as “cranial electrotherapy stimulation” without identifying the specific site or other parameters of stimulation (e.g., duration, current density, intensity, electrode size) calling into question existing reviews of this method. Even so, CES has been suggested to be effective in the treatment of anxiety, depression, stress, and insomnia, and the following parameters of stimulation have been reported: frequency (0.5 Hz to 167 kHz), intensity (100 μA to 4 mA), and duration of stimulation (5 min to 6 consecutive days).

… Biochemical changes—neurotransmitter and endorphin release. Several studies suggest that AC stimulation may be associated with changes in neurotransmitters and endorphin release. In this context, subthreshold stimulation induced by AC stimulation would indeed cause significant changes in the nervous system electrical activity.

For further reading on CES (AC stimulation) the wikipedia page is quite good!

Tali Sharot: The optimism bias

At around minute 13, Tali Sharot describes how she and collaborator Dr Ryota Kanai were able to influence the outcome of experiments designed to test optimism bias by applying TMS (transcranial magnetic stimulation). Amazing!

Dr. Tali Sharot at Institute of Cognitive Neuroscience at University College of London
Dr Ryota Kanai
Search for ‘transcranial direct current’ at ICN

One way to think about this (very generally) is that, in this case, TMS had both a positive and negative impact. This should also serve as cautionary to anyone self-experimenting with tDCS.

I recently reached out to Dr. Mark Beeman of Northwestern around the subject of testing the efficacy of tDCS especially in the context of DIY. I became aware of Dr. Beeman’s work through the new Jonah Lehrer book, ‘Imagine’. (I haven’t read it actually, but have listened to Lehrer discuss the book at length in numerous podcasts.) Dr. Beeman took the time to respond to my email stating that he was in fact at work on some experiments that use tDCS. About self-experiments, he had this to say…

I’d be hesitant to do too much self-experimentation. Not that I worry about causing direct damage, but brain activity is often a delicate balance, and enhancing some process may have adverse effects on another.

I also heard back from the  Laboratory of Cognition and Neural Stimulation at the University of Pennsylvania. They are who posted the questionnaire. Basically it was just a follow-up email asking more questions. I have yet to correspond with anyone personally and they have so far signed their emails as Research Specialist.

Transcranial Direct Current Stimulation Improves Learning Abilities in Pilots · | SteadyHealth.com

The lead author of this research study, Dr. Bullard, maintains that this procedure allows for altered brain-wave activity and accelerated learning. She examined MRI brains scans and magnetoencephalography (MEG) and found physical changes to confirm this. Apparently, these tests showed that TDCS gave a six-times baseline boost to the amplitude of a single brain wave.

This boost was not seen when a placebo TDCS was used and this mock wave was ineffective in exciting brain tissue. Basically the effect will persist long after the TDCS is stopped, up to almost an hour of time. These results tell us that TDCS increases the cerebral cortex excitability, therefore increasing arousal, improving sensory input response, and speeding up information processing.

Surprisingly, the MRI brain tests revealed actual structural changes in the brain five days after the TDCS was done. The neurons of the cerebral cortex connect with each other to form circuits by way of nerve fiber bundles (axons) that are buried deep below the surface of the brain. These fiber bundles are more robust and highly organized after the TDCS. None of this is noted on the side of the brain that is not stimulated by this procedure.

via Transcranial Direct Current Stimulation Improves Learning Abilities in Pilots · Healthy Living articles | Well Being center | SteadyHealth.com.

Non-Invasive Brain Stimulation Shown to Impact Walking Patterns

The main experiment consisted of a two-minute baseline period of walking with both belts at the same slow speed, followed by a 15-minute period with the belts at two separate speeds. While people were on the treadmill, researchers stimulated one side of the cerebellum to assess the impact on the rate of re-adjustment to a symmetric walking pattern.

Dr. Bastian’s team found not only that cerebellar tDCS can change the rate of cerebellum-dependent locomotor learning, but specifically that the anode speeds up learning and the cathode slows it down. It was also surprising that the side of the cerebellum that was stimulated mattered; only stimulation of the side that controls the leg walking on the faster treadmill belt changed adaptation rate.

“It is important to demonstrate that we can make learning faster or slower, as it suggests that we are not merely interfering with brain function,” says Dr. Bastian. “Our findings also suggest that tDCS can be selectively used to assess and understand motor learning.”

via Non-Invasive Brain Stimulation Shown to Impact Walking Patterns.
Abstract here.

Efficacy of Transcranial Direct Current Stimulation and Repetitive Transcranial Magnetic Stimulation for Treating Fibromyalgia Syndrome: A Systematic Review – Marlow – 2012 – Pain Practice – Wiley Online Library

Conclusion:  Studies involving excitatory rTMS/tDCS at M1 showed analogous pain reductions as well as considerably fewer side effects compared to FDA approved FMS pharmaceuticals. The most commonly reported side effects were mild, including transient headaches and scalp discomforts at the stimulation site. Yearly use of rTMS/tDCS regimens appears costly $11,740 to 14,507/year; however, analyses to appropriately weigh these costs against clinical and quality of life benefits for patients with FMS are lacking. Consequently, rTMS/tDCS should be considered when treating patients with FMS, particularly those who are unable to find adequate symptom relief with other therapies. Further work into optimal stimulation parameters and standardized outcome measures is needed to clarify associated efficacy and effectiveness.

via Efficacy of Transcranial Direct Current Stimulation and Repetitive Transcranial Magnetic Stimulation for Treating Fibromyalgia Syndrome: A Systematic Review – Marlow – 2012 – Pain Practice – Wiley Online Library.