DIY Electrodes | Melanie Segado

[Update 7/4/19] Just noticed this excellent DIY electrode post from Vagabond Banana who seems to be embarking on a DIY tDCS build/workshop project.
Is DIY As Good As Clinical/Commercial When It Comes To tDCS Electrodes?

Melanie Segado is a PhD Candidate in Neuroscience at McGill University | CoFounder @NeuroTechX | Cellist | Currently interested in #DIY #TDCS
via Twitter @sciencelaer

https://twitter.com/sciencelaer/status/770075458184634368

tdcsMelaniSegadoElectrodes1@sciencelaer tdcsMelaniSegadoElectrodes2@sciencelaer tdcsMelaniSegadoElectrodes3@sciencelaer

tDCS and Parkinson’s

First of all I need to reiterate that I am not a health professional by any means (I’m a retired musician). I was attracted to tDCS when cognitive enhancement effects were first reported back in 2012. Now years later I’m still not convinced there’s anything more than placebo going on with tDCS as far as cognitive enhancement goes, though as I’ve stated elsewhere on the blog, the research seems more conclusive around tDCS being an effective treatment for depression.

Parkinson’s is a progressive, debilitating, and at present, incurable disease that robs people of a wide variety of function, but especially movement and speech-related abilities. I have a close friend with Parkinson’s so I’ve been following the related tDCS literature. A recent study suggests that tDCS may prove to be an effective way to help with movement issues.

In Effects of Transcranial Direct Current Stimulation (tDCS) Over the Frontal Polar Area on Motor and Executive Functions in Parkinson’s Disease; A Pilot Study researchers at Toyama University Hospital, Japan, found that anodal tDCS improved motor function in patients with Parkinson’s. Note that this was a very small study (9 patients, early in their Parkinson’s). In this blog post I will attempt to present a DIY version of the study protocol.

To the best of our knowledge, this is the first clinical research reporting that tDCS over the FPA successfully improved the motor and non-motor functions in PD patients. These findings suggest that tDCS over the FPA might be a useful alternative for the treatment of PD patients.

The first thing I noticed was that the montage (where to put the electrodes), “tDCS over the frontal polar area (FPA)” was unusual, therefore not easily verified by looking at other studies. The researchers had previously determined that stimulation of the FPA in healthy subjects improved hand dexterity (Cerebral functional imaging using near-infrared spectroscopy during repeated performances of motor rehabilitation tasks tested on healthy subjects). From the paper (my edits, for brevity and clarity in regards my purpose here)…

The stimulation current was delivered … through a pair of saline-soaked sponge electrodes (5 × 7 cm) over the frontal polar area FPA, and occipital area (OPA).
tDCS was applied for 1 week (5 times/week: Monday–Friday).
A constant current of 1.0 mA was delivered for 900 seconds (15 minutes).
During the tDCS protocol, the patients received traditional physical therapy in the upper extremities (stretching and muscle strength exercise) while sitting in a chair.

According to the 10-20 EEG system (pdf), FPA is defined as Fp1 and Fp2, and OPA is positioned near O1 and O2. Digging into the previous study I determined that they used FPZ to target FPA, and OZ to target OPA.

Yes but… what does that look like on a head? Here I’m indicating the electrode targets using the Foc.us placements head model.


(Above) Anode placed at Fpz to target the frontal polar area (FPA)


(Above) Cathode placed at Oz to target occipital area (OPA).

So basically, there you have it…
1 mA stimulation, (approx) 2″ x 2″ saline-soaked sponges, for 15 minutes placed at Anode-Fpz and Cathode-Oz, every day for five days. Note that the study participants underwent their usual regimen of physical therapy while the tDCS was being applied.

Am I suggesting you try this? No, I’m not.
I personally do intend to see if this can help my friend whose walking and talking are becoming difficult. For this reason I wanted to be as clear in my understanding of the study as possible.

tDCS Anomia Treatment Setup

Little information accompanies this video, but it appears to me that Karly Chapman is an Aphasia clinician demonstrating tDCS setup for fellow clinicians. She sets up for an Anomia treatment. It strikes me that a motivated family member wouldn’t have much trouble replicating this at home. Also that an online version would be a useful tool for clinicians and patients alike.

DIY tDCS YouTube Catch Up

If you follow the blog you’ll know I’m not savvy enough in the ways of electronics to know a well-constructed DIY circuit when I see it. I’ve generally depended on the Reddit crowd to sort through the pros and cons of DIY tDCS circuit design. Now that there are a handful of professionally developed and readily available devices on the market, I’m not seeing as many DIY projects, but here’s a couple that popped up on Youtube in the last week or so.

DIY tDCS Secrets Revealed! Brain Hacking stancurtin


tDCS DIY Device Tutorial NeuoHacking

Foc.us Adds Online 3d Head Model For Help With Electrode Placement

From an email press release received 9/1/16.

To help with electrode positioning we have updated a 3d model head with the 10/20 electrode placements. Click the position name e.g. F3, and it will appear on the head. You will still need to translate this to your own head but we hope it helps. (Move the model around with your mouse.)

We are also now selling a version of Go Flow Pro that includes our 1020 position cap instead of the headband. It includes everything you need to get started.

tdcsFocusHead1 Shown here with F3 & F4tdcsFocusHead2

 

Why DIY?

Market forces, the for-profit bias that imbues every aspect of health care in America, skew R&D towards solutions and products that are highly profitable. That’s one of the reasons I was so curious about tDCS. You can do it at home. It doesn’t cost a fortune. My initial curiosity was inspired by research papers that seemed to indicate the potential for cognitive enhancement, primarily memory and learning. Many papers later, I’m not so sure, but where it comes to tDCS and depression I’m much more confident. There does seem to be an overwhelming amount of both research and anecdotal evidence to support the use of tDCS in depression. If that were better known, perhaps someone like the woman featured in this NBC news clip would have had somewhere to turn when she was denied coverage for continuing TMS treatment for depression.

Injured Workers Face Stacked Deck During Workers’ Comp Appeals Process, Critics Say

Focus Posts ‘Before You Get Started’ Page For DIYers

tdcs20160512-2Focustry-tdcs-largeFocus has posted a new page on their site which directs new users to show caution in their use of DIY tDCS. Focus goes so far as to caution people under the age of 18 not to try it.

If you are under 18 you should stop here. tDCS is not suitable for children and should not be used. This is because your brain is still developing and you don’t need to mess with its neuroplasticity.

The page goes on to list the known risks and a few benefits. Interestingly, it does not mention depression. I would have to imagine due to the possibility of crossing that nebulous regulatory line around ‘medical devices’.

Focus is, as I understand it, in the midst of fulfilling orders for their GoFlow device. You can read a full review of the GoFlow on SpeakWisdom, the (primarily) tDCS-related site authored by Dr. Brent Williams. Go Flow Pro, Nice Brain Stimulation Kit! 

New Go Flow Pro package.

New Go Flow Pro package.

 

Experimenting with electricity | Al Jazeera America

[Update 5/1/16] Perhaps with the unfortunate demise of Al Jazeera America, they have posted their TechKnow series online. We’re now able to watch the episode that featured Erica and Jeff and tDCS.

Exactly! Erica and Jeff have decided on a self-testing protocol I believe will effectively measure their tDCS results. Dual N-Back (online requires Silverlight) or download Brain Workshop.

By the time you read this there should also be a video interview at the TechKnow site.
Jeff’s (Boinger) Open tDCS: tDCS Regulation Circuits – Open Source Hardware project on GitHub: https://github.com/boinger/tdcs
Jeff’s DIY part list: https://github.com/boinger/tdcs/blob/master/bom.csv
And PCB board: https://github.com/boinger/tdcs/blob/master/board.png
Follow Jeff’s Reddit thread.: http://www.reddit.com/r/tDCS/comments/2hguka/experimenting_with_electricity_interview_from/

TechKnow: How do you plan on measuring your progress with the tDCS headset?
Erica: So I’m using a brain training game called Dual N-Back. So far I’ve tracked my progress with the game without using the tDCS, and I plan to use tDCS, and then practice the game and see how far I can get.
TechKnow: Are you going to record this information? Do you plan on making it available to other people?
Erica: I plan to track the amount of time I’m spending using tDCS and how well I’m performing in the game to see what is correlated.

via Experimenting with electricity | Al Jazeera America.

Open BCI Stretch Goal to Add tDCS!

Update 3/1/17 Not sure when it happened, but a reader alerted me to the fact the tDCS Shield addon was abandoned.

After many conversations with experts in the field of neuroscience and brain-computer interfacing, we have made the difficult decision to discontinue development of the tDCS Shield.

Very interesting! A successful ‘maker’ lab with previous EEG device success (32 channel, research-level EEG device) embarks on a lower cost, 4 channel EEG-device-for-the-masses Kickstarter campaign. It’s hugely successful, and fully funded ($80k) with 30 days left to go. So they launch a ‘stretch goal’ for an additional $80k of funding to add the option to pre-order (for $50) a tDCS module.

What does this mean for you and I? Well, it at least certainly points to the possibility that within the next few years we could be sitting in front of a computer screen, monitoring our EEG output (brainwaves, more or less) while we try out a tDCS (tACS, tRNS, tPCS etc.) montage. As in, “Oh Interesting! 1.5 mA stimulation to DLPFC (your forehead) tunes my Theta into that zone that makes me feel like writing a song!” (Kidding but you get the idea).

This gets me really excited when I think about the possibility of thousands of us doing it and contributing the collective data in a useful way to scientific research.

This is what first caught my eye! 3d printed HD-tDCS electrodes?

https://twitter.com/hyyke_io/status/667434603033006080

And here’s the Kickstarter Campaign. Check out the video. Fascinating!

OpenBCI: Biosensing for Everybody

Announcing tDCS Shield Stretch Goal

At OpenBCI, we are cautiously optimistic about the beneficial potential of transcranial direct-current stimulation (tDCS). As always, safety is our number one priority. We hope to educate the public about proper tDCS techniques, and to offer a new, open-source platform for studying the effects of tDCS on electrical brain activity. If we hit the $160,000 stretch goal, we will provide the option to pre-order a tDCS Shield that is compatible with both the Ganglion and our 32bit board. In addition, we will design custom Ultracortex node mounts for tDCS-specific electrodes. Anybody with the complete Ganglion+Ultracortex+tDCS system will be able to perform simultaneous neurostimulation and neurorecording, trying out different electrode configurations and creating custom “closed-loop” brain-computer interface systems.

tDCS is a type of neurostimulation in which a low-amperage direct current is passed through the scalp from a positively charged electrode (anode) to a negatively charged electrode (cathode). Some research has claimed that tDCS can increase cognitive performance and assist in the treatment of cognitive disorders such as depression and ADHD. Other studies have reported that there is no statistically conclusive evidence that tDCS has any net cognitive effect. Despite the effects of tDCS being critically debated, it is widely accepted that tDCS—when adhering to safety protocols and done in a controlled manner—is a safe method of brain stimulation.

Spread the word, and help us double our goal!

Joel testing a breadboarded prototype of the tDCS Shield: “Ooooo! It’s tingly…”
Joel testing a breadboarded prototype of the tDCS Shield: “Ooooo! It’s tingly…”

Caputron Now Carrying Direct To Consumer tDCS Devices

Note that I do have a relationship with Caputron. When you make a purchase from their site using promo code diytdcs (add to ‘voucher’ box, any item on their site) you receive a discount and I receive an equivalent amount in exchange for providing them a visitor. I have been offered similar relationships with various vendors, but Caputron was the first I felt comfortable partnering with, primarily because their customer support and communication has been outstanding. But also because they carry the ActivaDose Iontophoresis Device which is an FDA approved device (approved for iontophoresis, not tDCS, but the point is that the components and quality are medical grade.) Bundled with the Caputron electrode kit, this is an excellent choice for anyone looking to experiment with tDCS. This is the only device I am personally recommending at this time.

That said, Caputron has just started carrying other DIY DTC (Direct To Consumer) tDCS devices. They announced yesterday that they now carry Super Specific Devices tDCS Stimulator

super-specific-devices-tdcs-stimulator

Super Specific Devices tDCS Stimulator

the Apex Type A device, and…

Apex Type A

Apex Type A

the Cognitive Kit.

Cognitive Kit

Cognitive Kit

Caputron is rapidly becoming the primary distributor of all things brain stimulation. This puts them in the unique position of being able to bundle appropriate electrodes and cables with the various devices they carry.

But Caputron are also manufacturers and we can look forward to interesting tDCS related products of their own coming soon.

BrainKit 1.0 released

Nathan Whitmore continues to push the envelope on DIY brain stimulation. Somewhat above my limited capabilities, we can assume that as the project evolves, the build will get simpler.

BrainKit 1.0 released
To download BrainKit, click here to go to its GitHub page. You can also see an earlier post which lays out some of the concepts behind BrainKit here.

Planning BrainKit started about a year ago when I was thinking about the question “now that putting together the hardware and software to make a relatively inexpensive device to stimulate the brain is basically a solved problem, what is the next major obstacle to the use of noninvasive brain stimulation?” The answer was (and still is) figuring out where in the brain to stimulate to achieve some desired effect.

BrainKit was inspired by this idea, a brain stimulator which also is capable of monitoring brain activity and using statistics to understand the neural correlates of mental states and design stimulation montages more intelligently. For instance, BrainKit can find brain regions that show different patterns of activity in fatigued and alert states—and then allow you to stimulate these regions to see if it affects alertness.

Full article: http://quicktotheratcave.tumblr.com/post/124541990103/brainkit-1-0-released

Understanding public (mis)understanding of tDCS for enhancement

Hey, we’re mentioned in a legit scientific journal! The article traces the evolution of tDCS in the public’s consciousness, and points out how sites like my own and the tDCS subReddit serve a valuable function in filtering information as presented in the general media, which often has a tendency to sensationalize soundbite takeaways from legit scientific papers. So chalk one up for citizen science and let’s hope this is a step along the way towards legit research that taps into the DIY communities. i.e. University-level research that creates methodologies for using DIY generated data.

The availability of tDCS as a consumer device, as well as the vivid online exchange of experiences with tDCS as well as instructions for DIY use (cf.: http://www.reddit.com/r/tDCS/; https://www.diytdcs.com) may be explanatory factors shaping the change in public attitudes towards tDCS, The observation that in the LATER PERIOD misunderstanding was reduced can be regarded as evidence that the public was developing a more mature understanding of tDCS. In view of the past trends, it appears important to inform the public accurately on the short- and long-term consequences of tDCS on healthy individuals and on the plausibility of enhancement effects. In addition, detailed knowledge of the current practice and prevalence of DIY tDCS is also needed.

Source: Understanding public (mis)understanding of tDCS for enhancement