Early adopters of the magical thinking cap: a study on do-it-yourself (DIY) transcranial direct current stimulation (tDCS) user community

Well done! Anita Jwa’s study of the DIY tDCS community is published. I would think this very useful to policy makers. I was only surprised by a few of her findings. Links below to full paper.

This study is the first empirical attempt to investigate the DIY tDCS user community. A questionnaire survey of DIY users, interviews with some active power users, and a content analysis of web postings on tDCS showed distinctive demographic characteristics of the DIY users, ambiguities and mistaken assumptions around the current state and future prospects of the DIY use of tDCS, mixed use of tDCS for both treatment and cognitive enhancement, the existence of an active self-regulating system in the community, and users’ demands for official guidelines and their concerns about government regulations on tDCS.

Source: Early adopters of the magical thinking cap: a study on do-it-yourself (DIY) transcranial direct current stimulation (tDCS) user community

Brain Stimulation and Imaging Meeting June 12-13 2015

Some very interesting abstracts coming out around the upcoming BrainStim conference.

Dr. Giulio Ruffini, “Transcranial Current Stimulation: Going Multifocal”
“…I will describe a new class of devices using multi electrode montages and small, EEG-compatible electrodes, complemented by advanced biophysical models.”

Dr. Marom Bikson, “Targeting transcranial Electrical Stimulation using EEG: The scalp space approach”
“…Next, how to optimize tES based on either evoked or spontaneous EEG recording is discussed including a novel “scalp space” approach which requires no source localization and no computational modeling.”

I see also that the The Neuroelectrics Team will be demonstrating their “latest wireless EEG (Enobio) and tCS (StarStim) technology as well as our latest StarStim Research Home Kit.

Scientists retrieve lost memories using optogenetics

I’m exposing my bias here, which is the hope that tDCS will be found to facilitate memory retrieval. This study, in mice, retrieved dormant memories using light (optogenetics) to activate cells used in memory formation. Recent studies suggest that memories are formed within a synaptic network, parts of which extend to areas of the brain more frequently targeted by tDCS. Probably closest to the research I’d like to see done (that I’m aware of) was reported in 2009, “Where Are Old Memories Stored in the Brain?“. I imagine a study where early memory, triggered by photos and recollections, are imaged using fMRI and that later, those same areas are targeted using tDCS. In the study reported on above, Medial Temporal Lobe Activity during Retrieval of Semantic Memory Is Related to the Age of the Memory, researchers concluded that older memories associated with regions in the frontal lobe, temporal lobe, and parietal lobe. (Though seems inconclusive as to whether memories are ‘stored’ there… “An additional way to understand the increasing involvement of some cortical areas, especially frontal cortex, as time passes is that older memories require more strategic, effortful search.”) Now, back to the post title article…

The researchers then attempted to discover what happens to memories without this consolidation process. By administering a compound called anisomycin, which blocks protein synthesis within neurons, immediately after mice had formed a new memory, the researchers were able to prevent the synapses from strengthening.

When they returned one day later and attempted to reactivate the memory using an emotional trigger, they could find no trace of it. “So even though the engram cells are there, without protein synthesis those cell synapses are not strengthened, and the memory is lost,” Tonegawa says.

But startlingly, when the researchers then reactivated the protein synthesis-blocked engram cells using optogenetic tools, they found that the mice exhibited all the signs of recalling the memory in full.

“If you test memory recall with natural recall triggers in an anisomycin-treated animal, it will be amnesiac, you cannot induce memory recall,” Tonegawa says. “But if you go directly to the putative engram-bearing cells and activate them with light, you can restore the memory, despite the fact that there has been no LTP.”

Source: Scientists retrieve lost memories using optogenetics
See Also: Neuroanatomy of memory
Gone But Not Forgotten? The Mystery Behind Infant Memories
The Hippocampus and episodic memory
(video)
Neuron Basics (video)

Time to Take Another Look At foc.us tDCS and more | SpeakWisdom


It’s a Software World Now!
If you purchase a V2 (or own one now), you may wish to update its firmware periodically to take advantage of new features. Here are some key steps:

  1. Go to the foc.us web site and create an account: https://www.foc.us/customer/account/login/
  2. Log in with the account
  3. Connect your V2 doc to your capable PC (or Mac)
  4. On the left of your screen (once logged in), select “My Downloadable Products”
  5. Click the “Microsoft Software” (or Mac) download button and install
  6. Run the installed application and allow it to check and upgrade your V2 to the latest firmware

Source: Time to Take Another Look At foc.us tDCS and more | SpeakWisdom

Here’s What Zapping Your Brain with Electricity Feels Like | LiveScience

Interesting to note that Michael Weisend is now associated with San Francisco based company Rio Grande Neurosciences.

The current was set to 2 milliamps, about 1,000 times less than the electrical current that flows through a typical iPad charger. But only about 1/50th of that current makes it through the skull to the brain, Weisend said. The stimulation, which lasted for 10 minutes, was aimed at my right inferior frontal cortex and the right anterior temporal lobe, which are brain areas thought to be important for learning. If this were a real experiment, Weisend would have scanned my brain first to determine the optimal placement for the electrode, but in my case, he made an approximation.

I turned the electricity on myself, and the first thing I noticed was the mild stinging where the electrode attached to my head. Weisend assured me this was normal, but said if the sensation continued, he would turn it off and try to get a better connection. Next I noticed a slight taste of metal in my mouth, a common side effect of tDCS, according to Weisend.

Source: LiveScience.com

Spark of Genius? Awakening a Better Brain | World Science Festival

tDCSworldScienceFestival

Video: http://livestream.com/WorldScienceFestival/events/4063286/videos/88471585
Source: http://www.worldsciencefestival.com/programs/spark-genius-electrical-stimulation-brain/

OPENING CREATED BY: Blanca Li
DATE: Wednesday, May 27, 2015
TIME: 8:00 PM-9:30 PM
VENUE: NYU Skirball Center for the Performing Arts
How far would you go to improve your focus, memory, or even learning ability? Would you be willing to strap on headgear that delivers electrical shocks to targeted areas of your brain? You may soon have that option. It’s called transcranial direct current stimulation, and while variations of the technique are already known to help depression patients, it’s currently being tested on soldiers, and used by gamers, students, and others looking for a cognitive edge. Does it work? Can carefully directed electrical stimulation improve cognitive function? What are potential long-term effects? And how should it be regulated?

Functional role of frontal alpha oscillations in creativity

Following up on the recent Flavio Frohlich paper. Some details here in the abstract about how the boost in creativity was achieved.

Frohlich-tACS

Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent electroencephalography (EEG) data suggests that cortical oscillations in the alpha frequency band (8–12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a functional role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10 Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking (TTCT), a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40 Hz-tACS was used instead of 10 Hz-tACS to rule out a general “electrical stimulation” effect. No significant change in the Creativity Index was found for such frontal 40 Hz stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation.

There’s a paywall to the full paper, but Kurzweil.net has the details.
Alpha-rhythm brain stimulation shown to boost creativity

Does tDCS accelerate learning safely? – Dr. Michael Weisend | The Quantified Body

Excellent! A full hour with Dr. Wesiend. Haven’t listened yet but guaranteed to be the latest info in our understanding of tDCS. We met Dr. Weisend earlier in podcast #4,

Recently, transcranial direct current stimulation (tDCS) or the non-invasive targeting of weak direct current (DC) to specific brain regions has received media attention. Among the scientific research community, tDCS has been a subject of great interest owing to its usage ease, relative inexpensiveness, and encouraging research results on a range of functions. Studies have seen tDCS accelerate learning, reduce symptoms of dementia, and improve attention in those with Attention Deficit Disorder (ADD). Understandably, a coinciding rise in the DIY community has also prompted an increase in consumer devices available for home use in hopes of mimicking tDCS’s potential neuroenhancement abilities.

Source: Does tDCS accelerate learning safely? – Dr. Michael Weisend | The Quantified Body

Make New Memories But Keep the Old, With a Little Help From Electrodes | Smithsonian

Scarce on details but certainly I will be keeping tabs on this.

Deep sleep, a period that’s known as vital for memory formation, becomes rarer as people age, waning more and more after individuals hit their mid-30s. By attaching two electrodes to a person’s scalp, Walker can direct a current into the prefrontal area and simulate the slow waves of deep sleep while the wearer slumbers.
The technique is called transcranial direct-current stimulation (tDCS), and while the equipment to do it is commercially available, it is not FDA approved for use on medical conditions. The devices in their current form aren’t intelligent enough to know when a wearer is in deep non-rapid eye movement (NREM) sleep, and so they aren’t able to start stimulating in that sleep stage on their own and sync up with the brain’s waves. “At present, we scientists need to do this in a sleep lab,” says Walker. “We have to measure someone’s sleep, and then switch the stimulator on at the desired stimulating rhythm to have a beneficial effect.” That said, he believes in five to eight years these issues will be resolved, and these devices could help those with Alzheimer’s, dementia, insomnia, depression and anxiety.

Source: Make New Memories But Keep the Old, With a Little Help From Electrodes | Innovation | Smithsonian

Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity

Sham or anodal tDCS (1 mA) was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice) was significantly better when practice was performed with anodal tDCS than with sham tDCS. This effect was large  and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like (long-term potentiation) mechanism, which is in accordance with previous research.

The tolerability of transcranial electrical stimulation used across extended periods in a naturalistic context by healthy individuals

Is it safe? Obviously the test wasn’t designed to assess any possible negative cognitive effects, but apart from some, “skin tingling, itching, and mild burning sensations” the subjects tolerated frequent TES (transcranial electric stimulation) well.

In the present study, we tested the tolerability (safety) and compliance, compared to sham, of two common tES approaches having a current density < 2 mA/cm2; transcranial Direct Current Stimulation (tDCS) or transcranial Pulsed Current Stimulation (tPCS) used by healthy subjects three to five days (17 – 20 minutes per day) per week for up to six weeks in a naturalistic environment. In this study 100 healthy subjects were randomized to one of three treatment groups: tDCS (n = 33), tPCS (n = 30), or sham (n = 37) and blinded to the treatment condition. The tES and sham waveforms were delivered through self-adhering electrodes on the right lateral forehead and back of the neck. We conducted 1905 treatment sessions (636 sham, 623 tDCS, and 646 tPCS sessions) on study volunteers over a six-week period. There were no serious adverse events in any treatment condition.

Source: https://peerj.com/preprints/1097/

Transcranial Direct Current Stimulation of the Left Dorsolateral Prefrontal Cortex Shifts Preference of Moral Judgments

tDCS modified moral behavior! By ‘utilitarian’ I believe the researchers mean that the subject was less likely to ‘save the many’ by (actively participating in) sacrificing the few.

Accordingly, during anodal stimulation of the left DLPFC participants rated the utilitarian actions as more inappropriate than they did during sham and cathodal stimulation. Thus, anodal tDCS of the left DLPFC resulted in a shift of preference from an utilitarian, active decisions (i.e. to actively hazard another person’s life to rescue the lives of several people) to non-utilitarian, passive decisions (i.e. to avoid harming another person, but in consequence to accept the harm to several people.

For context, you might want to examine The Trolley Problem!

foc.us for research

So where is the clever researcher who will tap into Foc.us and their API to bring hundreds (thousands?) of Foc.us users into online study mode. What an opportunity to pioneer citizen science meets legit scientific research.

foc.us for research

Open standards, API and requests accepted

Foc.us v2 has all of the features found in your commercial research kit. You can run larger studies with more participants at lower cost. This includes double blind sham mode. Logging of all sessions at 50ms intervals. Set maximum current, maximum voltage, ramp up time and everyhing else.

If you have a custom request – triangle waves, custom patterns – we will code it if we can.